
CS193p

Fall 2017-18

Stanford CS193p
Developing Applications for iOS

Fall 2017-18

CS193p

Fall 2017-18

Today
Views

PlayingCard demo continued

Gestures
Getting multitouch input from users

Demo: Manipulating our Playing Card
Swiping, tapping and pinching

CS193p

Fall 2017-18

Demo
PlayingCard continued …

Now that we have our PlayingCard Model, time to implement our Controller and View
Creating a custom UIView subclass
Drawing with Core Graphics and UIBezierPath
UIView’s contentMode (i.e. redraw vs. scaling the bits on bounds change)
Drawing with transparency
More NSAttributedString dictionary keys … UIFont and NSParagraphStyle
UIFontMetrics scaling for users who want larger fonts
Managing subviews of your custom UIView
Using isHidden
CGAffineTransform
Constraint Priority
Assets.xcassets and drawing with UIImage
@IBDesignable and @IBInspectable
Using didSet to ensure redraws and relayouts when properties change

CS193p

Fall 2017-18

Gestures
We’ve seen how to draw in a UIView, how do we get touches?

We can get notified of the raw touch events (touch down, moved, up, etc.)
Or we can react to certain, predefined “gestures.” The latter is the way to go!

Gestures are recognized by instances of UIGestureRecognizer
The base class is “abstract.” We only actually use concrete subclasses to recognize.

There are two sides to using a gesture recognizer
1. Adding a gesture recognizer to a UIView (asking the UIView to “recognize” that gesture)
2. Providing a method to “handle” that gesture (not necessarily handled by the UIView)

Usually the first is done by a Controller
Though occasionally a UIView will do this itself if the gesture is integral to its existence

The second is provided either by the UIView or a Controller
Depending on the situation. We’ll see an example of both in our demo.

CS193p

Fall 2017-18

Adding a gesture recognizer to a UIView
Imagine we wanted a UIView in our Controller’s View to recognize a “pan” gesture.

@IBOutlet weak var pannableView: UIView {
 didSet {
 let panGestureRecognizer = UIPanGestureRecognizer(
 target: self, action: #selector(ViewController.pan(recognizer:))
)
 pannableView.addGestureRecognizer(panGestureRecognizer)
 }
}

Gestures

We can configure it to do so in the property observer for the outlet to that UIView …

CS193p

Fall 2017-18

@IBOutlet weak var pannableView: UIView {
 didSet {
 let panGestureRecognizer = UIPanGestureRecognizer(
 target: self, action: #selector(ViewController.pan(recognizer:))
)
 pannableView.addGestureRecognizer(panGestureRecognizer)
 }
}

Adding a gesture recognizer to a UIView
Imagine we wanted a UIView in our Controller’s View to recognize a “pan” gesture.

Gestures

The property observer’s didSet code gets called when iOS hooks up this outlet at runtime

We can configure it to do so in the property observer for the outlet to that UIView …

CS193p

Fall 2017-18

@IBOutlet weak var pannableView: UIView {
 didSet {
 let panGestureRecognizer = UIPanGestureRecognizer(
 target: self, action: #selector(ViewController.pan(recognizer:))
)
 pannableView.addGestureRecognizer(panGestureRecognizer)
 }
}

Adding a gesture recognizer to a UIView
Imagine we wanted a UIView in our Controller’s View to recognize a “pan” gesture.

Gestures

The property observer’s didSet code gets called when iOS hooks up this outlet at runtime
Here we are creating an instance of a concrete subclass of UIGestureRecognizer (for pans)

We can configure it to do so in the property observer for the outlet to that UIView …

CS193p

Fall 2017-18

@IBOutlet weak var pannableView: UIView {
 didSet {
 let panGestureRecognizer = UIPanGestureRecognizer(
 target: self, action: #selector(ViewController.pan(recognizer:))
)
 pannableView.addGestureRecognizer(panGestureRecognizer)
 }
}

Adding a gesture recognizer to a UIView
Imagine we wanted a UIView in our Controller’s View to recognize a “pan” gesture.

Gestures

The property observer’s didSet code gets called when iOS hooks up this outlet at runtime
Here we are creating an instance of a concrete subclass of UIGestureRecognizer (for pans)
The target gets notified when the gesture is recognized (here it’s the Controller itself)

We can configure it to do so in the property observer for the outlet to that UIView …

CS193p

Fall 2017-18

Adding a gesture recognizer to a UIView
Imagine we wanted a UIView in our Controller’s View to recognize a “pan” gesture.

@IBOutlet weak var pannableView: UIView {
 didSet {
 let panGestureRecognizer = UIPanGestureRecognizer(
 target: self, action: #selector(ViewController.pan(recognizer:))
)
 pannableView.addGestureRecognizer(panGestureRecognizer)
 }
}

Gestures

The property observer’s didSet code gets called when iOS hooks up this outlet at runtime
Here we are creating an instance of a concrete subclass of UIGestureRecognizer (for pans)
The target gets notified when the gesture is recognized (here it’s the Controller itself)
The action is the method invoked on recognition (that method’s argument? the recognizer)

We can configure it to do so in the property observer for the outlet to that UIView …

CS193p

Fall 2017-18

Adding a gesture recognizer to a UIView
Imagine we wanted a UIView in our Controller’s View to recognize a “pan” gesture.

@IBOutlet weak var pannableView: UIView {
 didSet {
 let panGestureRecognizer = UIPanGestureRecognizer(
 target: self, action: #selector(ViewController.pan(recognizer:))
)
 pannableView.addGestureRecognizer(panGestureRecognizer)
 }
}

Gestures

The property observer’s didSet code gets called when iOS hooks up this outlet at runtime
Here we are creating an instance of a concrete subclass of UIGestureRecognizer (for pans)
The target gets notified when the gesture is recognized (here it’s the Controller itself)
The action is the method invoked on recognition (that method’s argument? the recognizer)
Here we ask the UIView to actually start trying to recognize this gesture in its bounds

We can configure it to do so in the property observer for the outlet to that UIView …

CS193p

Fall 2017-18

@IBOutlet weak var pannableView: UIView {
 didSet {
 let panGestureRecognizer = UIPanGestureRecognizer(
 target: self, action: #selector(ViewController.pan(recognizer:))
)
 pannableView.addGestureRecognizer(panGestureRecognizer)
 }
}

Adding a gesture recognizer to a UIView
Imagine we wanted a UIView in our Controller’s View to recognize a “pan” gesture.

@IBOutlet weak var pannableView: UIView {
 didSet {
 let panGestureRecognizer = UIPanGestureRecognizer(
 target: self, action: #selector(ViewController.pan(recognizer:))
)
 pannableView.addGestureRecognizer(panGestureRecognizer)
 }
}

Gestures

The property observer’s didSet code gets called when iOS hooks up this outlet at runtime
Here we are creating an instance of a concrete subclass of UIGestureRecognizer (for pans)
The target gets notified when the gesture is recognized (here it’s the Controller itself)
The action is the method invoked on recognition (that method’s argument? the recognizer)
Here we ask the UIView to actually start trying to recognize this gesture in its bounds
Let’s talk about how we implement the handler …

We can configure it to do so in the property observer for the outlet to that UIView …

CS193p

Fall 2017-18

Gestures
A handler for a gesture needs gesture-specific information

So each concrete subclass provides special methods for handling that type of gesture

For example, UIPanGestureRecognizer provides 3 methods
func translation(in: UIView?) -> CGPoint // cumulative since start of recognition
func velocity(in: UIView?) -> CGPoint // how fast the finger is moving (points/s)
func setTranslation(CGPoint, in: UIView?)
This last one is interesting because it allows you to reset the translation so far
By resetting the translation to zero all the time, you end up getting “incremental” translation

The abstract superclass also provides state information
var state: UIGestureRecognizerState { get }
This sits around in .possible until recognition starts
For a continuous gesture (e.g. pan), it moves from .began thru repeated .changed to .ended
For a discrete (e.g. a swipe) gesture, it goes straight to .ended or .recognized.
It can go to .failed or .cancelled too, so watch out for those!

CS193p

Fall 2017-18

func pan(recognizer: UIPanGestureRecognizer) {
 switch recognizer.state {
 case .changed: fallthrough
 case .ended:
 let translation = recognizer.translation(in: pannableView)
 // update anything that depends on the pan gesture using translation.x and .y
 recognizer.setTranslation(CGPoint.zero, in: pannableView)
 default: break
 }
}

So, given this information, what would the pan handler look like?

Gestures

Remember that the action was pan(recognizer:)

CS193p

Fall 2017-18

func pan(recognizer: UIPanGestureRecognizer) {
 switch recognizer.state {
 case .changed: fallthrough
 case .ended:
 let translation = recognizer.translation(in: pannableView)
 // update anything that depends on the pan gesture using translation.x and .y
 recognizer.setTranslation(CGPoint.zero, in: pannableView)
 default: break
 }
}

So, given this information, what would the pan handler look like?

Gestures

Remember that the action was pan(recognizer:)
We are only going to do anything when the finger moves or lifts up off the device’s surface

CS193p

Fall 2017-18

func pan(recognizer: UIPanGestureRecognizer) {
 switch recognizer.state {
 case .changed: fallthrough
 case .ended:
 let translation = recognizer.translation(in: pannableView)
 // update anything that depends on the pan gesture using translation.x and .y
 recognizer.setTranslation(CGPoint.zero, in: pannableView)
 default: break
 }
}

So, given this information, what would the pan handler look like?

Gestures

Remember that the action was pan(recognizer:)
We are only going to do anything when the finger moves or lifts up off the device’s surface
fallthrough is “execute the code for the next case down” (case .changed,.ended: ok too)

CS193p

Fall 2017-18

func pan(recognizer: UIPanGestureRecognizer) {
 switch recognizer.state {
 case .changed: fallthrough
 case .ended:
 let translation = recognizer.translation(in: pannableView)
 // update anything that depends on the pan gesture using translation.x and .y
 recognizer.setTranslation(CGPoint.zero, in: pannableView)
 default: break
 }
}

So, given this information, what would the pan handler look like?

Gestures

Remember that the action was pan(recognizer:)
We are only going to do anything when the finger moves or lifts up off the device’s surface
fallthrough is “execute the code for the next case down” (case .changed,.ended: ok too)
Here we get the location of the pan in the pannableView’s coordinate system

CS193p

Fall 2017-18

func pan(recognizer: UIPanGestureRecognizer) {
 switch recognizer.state {
 case .changed: fallthrough
 case .ended:
 let translation = recognizer.translation(in: pannableView)
 // update anything that depends on the pan gesture using translation.x and .y
 recognizer.setTranslation(CGPoint.zero, in: pannableView)
 default: break
 }
}

So, given this information, what would the pan handler look like?

Gestures

Remember that the action was pan(recognizer:)
We are only going to do anything when the finger moves or lifts up off the device’s surface
fallthrough is “execute the code for the next case down” (case .changed,.ended: ok too)
Here we get the location of the pan in the pannableView’s coordinate system
Now we do whatever we want with that information

CS193p

Fall 2017-18

So, given this information, what would the pan handler look like?
func pan(recognizer: UIPanGestureRecognizer) {
 switch recognizer.state {
 case .changed: fallthrough
 case .ended:
 let translation = recognizer.translation(in: pannableView)
 // update anything that depends on the pan gesture using translation.x and .y
 recognizer.setTranslation(CGPoint.zero, in: pannableView)
 default: break
 }
}

Gestures

Remember that the action was pan(recognizer:)
We are only going to do anything when the finger moves or lifts up off the device’s surface
fallthrough is “execute the code for the next case down” (case .changed,.ended: ok too)
Here we get the location of the pan in the pannableView’s coordinate system
Now we do whatever we want with that information
By resetting the translation, the next one we get will be incremental movement

CS193p

Fall 2017-18

Gestures
UIPinchGestureRecognizer
var scale: CGFloat // not read-only (can reset)
var velocity: CGFloat { get } // scale factor per second

UIRotationGestureRecognizer
var rotation: CGFloat // not read-only (can reset); in radians
var velocity: CGFloat { get } // radians per second

UISwipeGestureRecognizer
Set up the direction and number of fingers you want
var direction: UISwipeGestureRecoginzerDirection // which swipe directions you want
var numberOfTouchesRequired: Int // finger count

CS193p

Fall 2017-18

Gestures
UITapGestureRecognizer

This is discrete, but you should check for .ended to actually do something.
Set up the number of taps and fingers you want …
var numberOfTapsRequired: Int // single tap, double tap, etc.
var numberOfTouchesRequired: Int // finger count

UILongPressRecognizer
This is a continuous (not discrete) gesture (i.e. you’ll get .changed if the finger moves)
You still configure it up-front …
var minimumPressDuration: TimeInterval // how long to hold before its recognized
var numberOfTouchesRequired: Int // finger count
var allowableMovement: CGFloat // how far finger can move and still recognize
Very important to pay attention to .cancelled because of drag and drop

CS193p

Fall 2017-18

Demo Code
Download the demo code from today’s lecture.

