
CS193p

Fall 2017-18

Stanford CS193p
Developing Applications for iOS

Fall 2017-18

CS193p

Fall 2017-18

Today
Mostly more Swift but some other stuff too

Quick demo of mutating

protocols

String
NSAttributedString
Closures (and functions as types in general)

CS193p

Fall 2017-18

Data Structures
Four Essential Data Structure-building Concepts in Swift
class
struct
enum
protocol

struct
Value type (structs don’t live in the heap and are passed around by copying them)
Very efficient “copy on write” is automatic in Swift
This copy on write behavior requires you to mark mutating methods
No inheritance (of data)
Mutability controlled via let (e.g. you can’t add elements to an Array assigned by let)
Supports functional programming design
Examples: Card, Array, Dictionary, String, Character, Int, Double, UInt32

Let’s jump over to Concentration and see what happens if we make Concentration a struct …

CS193p

Fall 2017-18

Data Structures
Four Essential Data Structure-building Concepts in Swift
class
struct
enum
protocol

protocol
A type which is a declaration of functionality only
No data storage of any kind (so it doesn’t make sense to say it’s a “value” or “reference” type)
Essentially provides multiple inheritance (of functionality only, not storage) in Swift
We’ll “ease into” learning about protocols since it’s new to most of you
Let’s dive a little deeper into protocols …

CS193p

Fall 2017-18

Protocols
Protocols are a way to express an API more concisely

Instead of forcing the caller of an API to pass a specific class, struct, or enum,
an API can let callers pass any class/struct/enum that the caller wants
but can require that they implement certain methods and/or properties that the API wants.

The API expresses the functions or variables it wants the caller to provide using a protocol.
So a protocol is simply a collection of method and property declarations.

What are protocols good for?
Making API more flexible and expressive
Blind, structured communication between View and Controller (delegation)
Mandating behavior (e.g. the keys of a Dictionary must be hashable)
Sharing functionality in disparate types (String, Array, CountableRange are all Collections)
Multiple inheritance (of functionality, not data)

CS193p

Fall 2017-18

Protocols
A protocol is a TYPE

It can be used almost anywhere any other type is used: vars, function parameters, etc.

CS193p

Fall 2017-18

Protocols
There are three aspects to a protocol

1. the protocol declaration (which properties and methods are in the protocol)
2. a class, struct or enum declaration that makes the claim to implement the protocol
3. the code in said class, struct or enum (or extension) that implements the protocol

CS193p

Fall 2017-18

Protocols
Optional methods in a protocol

Normally any protocol implementor must implement all the methods/properties in the protocol.
However, it is possible to mark some methods in a protocol optional

(don’t get confused with the type Optional, this is a different thing).
Any protocol that has optional methods must be marked @objc.
And any class that implements an optional protocol must inherit from NSObject.
These sorts of protocols are used often in iOS for delegation (more later on this).
Except for delegation, a protocol with optional methods is rarely (if ever) used.
As you can tell from the @objc designation, it’s mostly for backwards compatibility.

CS193p

Fall 2017-18

Declaration of the protocol itself
protocol SomeProtocol : InheritedProtocol1, InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double, anotherArgument: String) -> SomeType
 mutating func changeIt()

 init(arg: Type)
}

Protocols

CS193p

Fall 2017-18

Declaration of the protocol itself
protocol SomeProtocol : InheritedProtocol1, InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double, anotherArgument: String) -> SomeType
 mutating func changeIt()

 init(arg: Type)
}

Protocols

Anyone that implements SomeProtocol must also implement InheritedProtocol1 and 2

CS193p

Fall 2017-18

Declaration of the protocol itself
protocol SomeProtocol : InheritedProtocol1, InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double, anotherArgument: String) -> SomeType
 mutating func changeIt()

 init(arg: Type)
}

Protocols

Anyone that implements SomeProtocol must also implement InheritedProtocol1 and 2
You must specify whether a property is get only or both get and set

CS193p

Fall 2017-18

Declaration of the protocol itself
protocol SomeProtocol : InheritedProtocol1, InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double, anotherArgument: String) -> SomeType
 mutating func changeIt()

 init(arg: Type)
}

Protocols

Anyone that implements SomeProtocol must also implement InheritedProtocol1 and 2
You must specify whether a property is get only or both get and set
Any functions that are expected to mutate the receiver should be marked mutating

CS193p

Fall 2017-18

Declaration of the protocol itself
protocol SomeProtocol : class, InheritedProtocol1, InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double, anotherArgument: String) -> SomeType
 mutating func changeIt()

 init(arg: Type)
}

Protocols

Anyone that implements SomeProtocol must also implement InheritedProtocol1 and 2
You must specify whether a property is get only or both get and set
Any functions that are expected to mutate the receiver should be marked mutating

(unless you are going to restrict your protocol to class implementers only with class keyword)

CS193p

Fall 2017-18

Declaration of the protocol itself
protocol SomeProtocol : InheritedProtocol1, InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double, anotherArgument: String) -> SomeType
 mutating func changeIt()

 init(arg: Type)
}

Protocols

Anyone that implements SomeProtocol must also implement InheritedProtocol1 and 2
You must specify whether a property is get only or both get and set
Any functions that are expected to mutate the receiver should be marked mutating

(unless you are going to restrict your protocol to class implementers only with class keyword)
You can even specify that implementers must implement a given initializer

CS193p

Fall 2017-18

How an implementer says “I implement that protocol”
class SomeClass : SuperclassOfSomeClass, SomeProtocol, AnotherProtocol {

 // implementation of SomeClass here

 // which must include all the properties and methods in SomeProtocol & AnotherProtocol
}

Protocols

Claims of conformance to protocols are listed after the superclass for a class

CS193p

Fall 2017-18

enum SomeEnum : SomeProtocol, AnotherProtocol {

 // implementation of SomeEnum here

 // which must include all the properties and methods in SomeProtocol & AnotherProtocol
}

How an implementer says “I implement that protocol”

Protocols

Claims of conformance to protocols are listed after the superclass for a class
(obviously, enums and structs would not have the superclass part)

CS193p

Fall 2017-18

struct SomeStruct : SomeProtocol, AnotherProtocol {

 // implementation of SomeStruct here

 // which must include all the properties and methods in SomeProtocol & AnotherProtocol
}

How an implementer says “I implement that protocol”

Protocols

Claims of conformance to protocols are listed after the superclass for a class
(obviously, enums and structs would not have the superclass part)

CS193p

Fall 2017-18

How an implementer says “I implement that protocol”
struct SomeStruct : SomeProtocol, AnotherProtocol {

 // implementation of SomeStruct here

 // which must include all the properties and methods in SomeProtocol & AnotherProtocol
}

Protocols

Claims of conformance to protocols are listed after the superclass for a class
(obviously, enums and structs would not have the superclass part)

Any number of protocols can be implemented by a given class, struct or enum

CS193p

Fall 2017-18

How an implementer says “I implement that protocol”
class SomeClass : SuperclassOfSomeClass, SomeProtocol, AnotherProtocol {

 // implementation of SomeClass here, including …

 required init(…)
}

Protocols

Claims of conformance to protocols are listed after the superclass for a class
(obviously, enums and structs would not have the superclass part)

Any number of protocols can be implemented by a given class, struct or enum
In a class, inits must be marked required (or otherwise a subclass might not conform)

CS193p

Fall 2017-18

How an implementer says “I implement that protocol”
extension Something : SomeProtocol {

 // implementation of SomeProtocol here

 // no stored properties though

}

Protocols

Claims of conformance to protocols are listed after the superclass for a class
(obviously, enums and structs would not have the superclass part)

Any number of protocols can be implemented by a given class, struct or enum
In a class, inits must be marked required (or otherwise a subclass might not conform)
You are allowed to add protocol conformance via an extension

CS193p

Fall 2017-18

Using protocols like the type that they are!

Protocols
protocol Moveable {

mutating func move(to point: CGPoint)

}

class Car : Moveable {

func move(to point: CGPoint) { … }

func changeOil()

}

struct Shape : Moveable {

mutating func move(to point: CGPoint) { … }

func draw()

}

let prius: Car = Car()

let square: Shape = Shape()

CS193p

Fall 2017-18

Using protocols like the type that they are!

Protocols
protocol Moveable {

 mutating func move(to point: CGPoint)

}

class Car : Moveable {

 func move(to point: CGPoint) { … }

 func changeOil()

}

struct Shape : Moveable {

 mutating func move(to point: CGPoint) { … }

 func draw()

}

let prius: Car = Car()

let square: Shape = Shape()

CS193p

Fall 2017-18

Using protocols like the type that they are!

Protocols
var thingToMove: Moveable = priusprotocol Moveable {

 mutating func move(to point: CGPoint)

}

class Car : Moveable {

 func move(to point: CGPoint) { … }

 func changeOil()

}

struct Shape : Moveable {

 mutating func move(to point: CGPoint) { … }

 func draw()

}

let prius: Car = Car()

let square: Shape = Shape()

CS193p

Fall 2017-18

Using protocols like the type that they are!

Protocols
var thingToMove: Moveable = prius

thingToMove.move(to: …)

protocol Moveable {

 mutating func move(to point: CGPoint)

}

class Car : Moveable {

 func move(to point: CGPoint) { … }

 func changeOil()

}

struct Shape : Moveable {

 mutating func move(to point: CGPoint) { … }

 func draw()

}

let prius: Car = Car()

let square: Shape = Shape()

CS193p

Fall 2017-18

Using protocols like the type that they are!

Protocols
var thingToMove: Moveable = prius

thingToMove.move(to: …)

thingToMove.changeOil()

protocol Moveable {

 mutating func move(to point: CGPoint)

}

class Car : Moveable {

 func move(to point: CGPoint) { … }

 func changeOil()

}

struct Shape : Moveable {

 mutating func move(to point: CGPoint) { … }

 func draw()

}

let prius: Car = Car()

let square: Shape = Shape()

CS193p

Fall 2017-18

Using protocols like the type that they are!

Protocols
var thingToMove: Moveable = prius

thingToMove.move(to: …)

thingToMove.changeOil()

thingToMove = square

protocol Moveable {

 mutating func move(to point: CGPoint)

}

class Car : Moveable {

 func move(to point: CGPoint) { … }

 func changeOil()

}

struct Shape : Moveable {

 mutating func move(to point: CGPoint) { … }

 func draw()

}

let prius: Car = Car()

let square: Shape = Shape()

CS193p

Fall 2017-18

Using protocols like the type that they are!

Protocols
var thingToMove: Moveable = prius

thingToMove.move(to: …)

thingToMove.changeOil()

thingToMove = square

let thingsToMove: [Moveable] = [prius, square]

protocol Moveable {

 mutating func move(to point: CGPoint)

}

class Car : Moveable {

 func move(to point: CGPoint) { … }

 func changeOil()

}

struct Shape : Moveable {

 mutating func move(to point: CGPoint) { … }

 func draw()

}

let prius: Car = Car()

let square: Shape = Shape()

CS193p

Fall 2017-18

Using protocols like the type that they are!

Protocols
var thingToMove: Moveable = prius

thingToMove.move(to: …)

thingToMove.changeOil()

thingToMove = square

let thingsToMove: [Moveable] = [prius, square]

func slide(slider: Moveable) {

 let positionToSlideTo = …

 slider.move(to: positionToSlideTo)

}

slide(prius)

slide(square)

protocol Moveable {

 mutating func move(to point: CGPoint)

}

class Car : Moveable {

 func move(to point: CGPoint) { … }

 func changeOil()

}

struct Shape : Moveable {

 mutating func move(to point: CGPoint) { … }

 func draw()

}

let prius: Car = Car()

let square: Shape = Shape()

CS193p

Fall 2017-18

Using protocols like the type that they are!

Protocols
var thingToMove: Moveable = prius

thingToMove.move(to: …)

thingToMove.changeOil()

thingToMove = square

let thingsToMove: [Moveable] = [prius, square]

func slide(slider: Moveable) {

 let positionToSlideTo = …

 slider.move(to: positionToSlideTo)

}

slide(prius)

slide(square)

func slipAndSlide(x: Slippery & Moveable)

slipAndSlide(prius)

protocol Moveable {

 mutating func move(to point: CGPoint)

}

class Car : Moveable {

 func move(to point: CGPoint) { … }

 func changeOil()

}

struct Shape : Moveable {

 mutating func move(to point: CGPoint) { … }

 func draw()

}

let prius: Car = Car()

let square: Shape = Shape()

CS193p

Fall 2017-18

Controller

View
delegate

data source

should

will did

countdata
at

Delegation
A very important (simple) use of protocols

It’s a way to implement “blind communication” between a View and its Controller

CS193p

Fall 2017-18

Delegation
A very important (simple) use of protocols

It’s a way to implement “blind communication” between a View and its Controller

How it plays out …
1. A View declares a delegation protocol (i.e. what the View wants the Controller to do for it)
2. The View’s API has a weak delegate property whose type is that delegation protocol
3. The View uses the delegate property to get/do things it can’t own or control on its own
4. The Controller declares that it implements the protocol
5. The Controller sets delegate of the View to itself using the property in #2 above
6. The Controller implements the protocol (probably it has lots of optional methods in it)

Now the View is hooked up to the Controller
But the View still has no idea what the Controller is, so the View remains generic/reusable

This mechanism is found throughout iOS
However, it was designed pre-closures in Swift. Closures are sometimes a better option.
We’ll learn about closures soon.

CS193p

Fall 2017-18

Delegation
Example
UIScrollView (which we’ll talk about next week) has a delegate property …
weak var delegate: UIScrollViewDelegate?

The UIScrollViewDelegate protocol looks like this …
@objc protocol UIScrollViewDelegate {

optional func scrollViewDidScroll(scrollView: UIScrollView)
optional func viewForZooming(in scrollView: UIScrollView) -> UIView

… and many more …
}

A Controller with a UIScrollView in its View would be declared like this …
class MyViewController : UIViewController, UIScrollViewDelegate { … }
… probably in the @IBOutlet didSet for the scroll view, the Controller would do …
scrollView.delegate = self
… and the Controller then would implement any of the protocol’s methods it is interested in.

CS193p

Fall 2017-18

Another use of Protocols
Being a key in a Dictionary

To be a key in a Dictionary, you have to be able to be unique.
A key in a Dictionary does this by providing an Int that is very probably unique (a hash)

and then also by implementing equality testing to see if two keys are, in fact, the same.

This is enforced by requiring that a Dictionary’s keys implement the Hashable protocol.
Here’s what that protocol looks like …
protocol Hashable: Equatable {

var hashValue: Int { get }
}
Very simple. Note, though, that Hashable inherits from Equatable …

CS193p

Fall 2017-18

Another use of Protocols
Being a key in a Dictionary

That means that to be Hashable, you also have to implement Equatable.
The Equatable protocol looks like this …
protocol Equatable {

static func ==(lhs: Self, rhs: Self) -> Bool
}
Types that conform to Equatable have to have a type function (note the static) called ==
The arguments to == are both of that same type (i.e. Self of the type is the type itself)

The == operator also happens to look for such a static method to provide its implementation!

CS193p

Fall 2017-18

Another use of Protocols
Being a key in a Dictionary
Dictionary is then declared like this: Dictionary<Key: Hashable, Value>
This restricts keys to be things that conform to Hashable (there’s no restriction on values)

Let’s go make Card be Hashable.
Then we can use it directly as the key into our emoji Dictionary.
As a bonus, we’ll be able to compare Cards directly since they’ll be Equatable.
This will even allow us to make identifier be private in Card, which makes a lot of sense.

CS193p

Fall 2017-18

Demo
Make Card struct Hashable and Equatable

Doing this allows us to make Card’s identifier private
It also lets us look up Cards directly in a Dictionary (rather than with its identifier)
And we can use == to compare Cards directly
And for your homework, supporting Equatable lets you use index(of:) on an Array of things

CS193p

Fall 2017-18

Advanced use of Protocols
“Multiple inheritance” with protocols
CountableRange implements many protocols, but here are a couple of important ones …
Sequence — makeIterator (and thus supports for in)
Collection — subscripting (i.e. []), index(offsetBy:), index(of:), etc.

Why do it this way?
Because Array, for example, also implements these protocols.
So now Apple can create generic code that operates on a Collection and it will work on both!
Dictionary is also a Collection, as is Set and String.

And they don’t all just inherit the fact that they implement the methods in Collection,
they actually inherit an implementation of many of the methods in Collection, because …

CS193p

Fall 2017-18

protocol & extension
Using extension to provide protocol implementation

We said that protocol implementation is provided by implementing types (struct, enum, class)
However, an extension can be used to add default implementation to a protocol.
Since there’s no storage, said implementation has to be in terms of other API in the protocol

(and any API in any protocol that that protocol inherits from, of course).

For example, for the Sequence protocol, you really only need to implement makeIterator.
(An iterator implements the IteratorProtocol which just has the method next().)
If you do, you will automatically get implementations for all these other methods in Sequence:
contains(), forEach(), joined(separator:), min(), max(), even filter() and map(), et. al.

All of these are implemented via an extension to the Sequence protocol.
This extension (provided by Apple) uses only Sequence protocol methods in its implementation.
extension Sequence {

func contains(_ element: Element) -> Bool { }
// etc.

}

CS193p

Fall 2017-18

Advanced use of Protocols
Functional Programming

By combining protocols with generics and extensions (default implementations),
you can build code that focusses more on the behavior of data structures than storage.

This approach to development is called “functional programming.”
It is different than “object-oriented programming” (it’s sort of an evolution thereof).
We don’t have time to teach functional programming, but you are getting a taste of it.
What’s great about Swift is that it supports both paradigms.

CS193p

Fall 2017-18

String
The characters in a String

A String is made up of Unicodes, but there’s also the concept of a Character.
A Character is what a human would perceive to be a single lexical character.
This is true even if a single Character is made up of multiple Unicodes.

For example, there is a Unicode which is “apply an accent to the previous character”.
But there is also a Unicode which is é (the letter e with an accent on it).
So the string café might be 4 Unicodes (c-a-f-é) or 5 Unicodes (c-a-f-e-’).
In either case, we preceive it as 4 Characters.
Because of this ambiguity, the index into a String cannot be an Int.
Is the p in “café pesto” at index 5 or index 6? Depends on the é.
Indices into Strings are therefore of a different type … String.Index.
The simplest ways to get an index are startIndex, endIndex and index(of:).
There are other ways (see the documentation for more).
To move to another index, use index(String.Index, offsetBy: Int).

CS193p

Fall 2017-18

String
The characters in a String
let pizzaJoint = “café pesto”
let firstCharacterIndex = pizzaJoint.startIndex // of type String.Index
let fourthCharacterIndex = pizzaJoint.index(firstCharacterIndex, offsetBy: 3)
let fourthCharacter = pizzaJoint[fourthCharacterIndex] // é

if let firstSpace = pizzaJoint.index(of: “ “) { // returns nil if “ ” not found
let secondWordIndex = pizzaJoint.index(firstSpace, offsetBy: 1)
let secondWord = pizzaJoint[secondWordIndex..<pizzaJoint.endIndex]

}
Note the ..< above.
This is a Range of String.Index.
Range is a generic type (like Array is). It doesn’t have to be a range of Ints.

Another way to find the second word: pizzaJoint.components(separatedBy: “ “)[1]
components(separatedBy:) returns an Array<String> (might be empty, though, so careful!)

CS193p

Fall 2017-18

String
The characters in a String
String is also a Collection (in the same sense that an Array is a Collection) of Characters
All the indexing stuff (index(of:), etc.) is part of Collection.
A Collection is also a Sequence, so you can do things like …

for c in s { } // iterate through all Characters in s

let characterArray = Array(s) // Array<Character>

(Array has an init that takes any Sequence as an argument.)

A String is a value type (it’s a struct)
We usually work with immutable Strings (i.e. let s = …).
But there are mutating methods on String as well, for example …
var s = pizzaJoint // makes a mutable copy of pizzaJoint (because it’s a value type!)
s.insert(contentsOf: “ foo”, at: s.index(of: “ “)!) // café foo pesto
The type of contentsOf: argument is any Collection of Character (which String is).

CS193p

Fall 2017-18

String
Other String Methods
func hasPrefix(String) -> Bool
func hasSuffix(String) -> Bool
var localizedCapitalized/Lowercase/Uppercase: String

func replaceSubrange(Range<String.Index>, with: Collection of Character)
e.g., s.replaceSubrange(..<s.endIndex, with: “new contents”)
Note the ..< Range appears to have no start! It defaults to the start of the String.

And much, much more. Check out the documentation.

CS193p

Fall 2017-18

Demo
Change our emojiChoices to be a String

It really doesn’t matter either way
But it’s a good opportunity to compare String and Array (which are surprisingly similar)
We’ll also get a little bit of insight into the protocol-based design of the Foundation framework

CS193p

Fall 2017-18

NSAttributedString
A String with attributes attached to each character

Conceptually, an object that pairs a String and a Dictionary of attributes for each Character.
The Dictionary’s keys are things like “the font” or “the color”, etc.
The Dictionary’s values depend on what the key is (UIFont or UIColor or whatever).
Many times (almost always), large ranges of Characters have the same Dictionary.
Often (like in your homework), the entire NSAttributedString uses the same Dictionary.
You can put NSAttributedStrings on UILabels, UIButtons, etc.
Next week we’ll also learn how to draw an NSAttributedString on the screen directly.

CS193p

Fall 2017-18

NSAttributedString
Creating and using an NSAttributedString

Here’s how we’d make the flip count label have orange, outlined text …
let attributes: [NSAttributedStringKey : Any] = [// note: type cannot be inferred here

.strokeColor : UIColor.orange,

.strokeWidth : 5.0 // negative number here would mean fill (positive means outline)
]
let attribtext = NSAttributedString(string: “Flips: 0”, attributes: attributes)
flipCountLabel.attributedText = attribtext // UIButton has attributedTitle

CS193p

Fall 2017-18

NSAttributedString
Peculiarities of NSAttributedString
NSAttributedString is a completely different data structure than String.
The “NS” is a clue that it is an “old style” Objective-C class.
Thus it is not really like String (for example, it’s a class, not a struct).
Since it’s not a value type, you can’t create a mutable NSAttributedString by just using var.
To get mutability, you have to use a subclass of it called NSMutableAttributedString.
NSAttributedString was constructed with NSString in mind, not Swift’s String.
NSString and String use slightly different encodings.
There is some automatic bridging between old Objective-C stuff and Swift types.
But it can be tricky with NSString to String bridging because of varying-length Unicodes.
This all doesn’t matter if the entire string has the same attributes (like in your homework).
Or if the NSAttributedString doesn’t contain “wacky” Unicode characters.
Otherwise, be careful indexing into the NSAttributedString.

CS193p

Fall 2017-18

Demo
Make flip count outlined text

Let’s apply the code from the previous slide to Concentration

CS193p

Fall 2017-18

Function Types
Function types

Functions are people* too! (* er, types)
You can declare a variable (or parameter to a method or whatever) to be of type “function”
You’ll declare it with the types of the functions arguments (and return type) included
You can do this anywhere any other type is allowed

Example …
var operation: (Double) -> Double
This is a var called operation
It is of type “function that takes a Double and returns a Double”
You can assign it like any other variable …
operation = sqrt // sqrt is just a function that takes a Double and returns a Double
You can “call” this function using syntax very similar to any function call …
let result = operation(4.0) // result will be 2.0

CS193p

Fall 2017-18

Function Types
Closures

Often you want to create the function “on the fly” (rather than already-existing like sqrt).
You can do this “in line” using a closure.

Imagine we had a function that changed the sign of its argument …
func changeSign

var operation: (Double) -> Double
operation =
let result = operation(4.0) // result will be -4.0

(operand: Double) -> Double { return -operand }

changeSign

We could use it instead of sqrt …

CS193p

Fall 2017-18

Function Types
Closures

Often you want to create the function “on the fly” (rather than already-existing like sqrt).

You can do this “in line” using a closure.

Imagine we had a function that changed the sign of its argument …

func changeSign

var operation: (Double) -> Double
operation =
let result = operation(4.0) // result will be -4.0

We can “in line” changeSign simply by moving the function (without its name) below …

(operand: Double) -> Double { return -operand }

changeSign

CS193p

Fall 2017-18

Closures

Often you want to create the function “on the fly” (rather than already-existing like sqrt).

You can do this “in line” using a closure.

Imagine we had a function that changed the sign of its argument …

var operation: (Double) -> Double
operation =
let result = operation(4.0) // result will be -4.0

{ return -operand }(operand: Double) -> Double

We can “in line” changeSign simply by moving the function (without its name) below …

Function Types

CS193p

Fall 2017-18

A minor syntactic change: Move the first { to the start and replace with in …

Closures

Often you want to create the function “on the fly” (rather than already-existing like sqrt).

You can do this “in line” using a closure.

Imagine we had a function that changed the sign of its argument …

var operation: (Double) -> Double
operation =
let result = operation(4.0) // result will be -4.0

{ return -operand }(operand: Double) -> Double

Function Types

CS193p

Fall 2017-18

A minor syntactic change: Move the first { to the start and replace with in …

Closures

Often you want to create the function “on the fly” (rather than already-existing like sqrt).

You can do this “in line” using a closure.

Imagine we had a function that changed the sign of its argument …

var operation: (Double) -> Double
operation =
let result = operation(4.0) // result will be -4.0

return -operand }in(operand: Double) -> Double

Function Types

{

CS193p

Fall 2017-18

Closures

Often you want to create the function “on the fly” (rather than already-existing like sqrt).

You can do this “in line” using a closure.

Imagine we had a function that changed the sign of its argument …

var operation: (Double) -> Double
operation =
let result = operation(4.0) // result will be -4.0

-> Double: Double)

Swift can infer that operation returns a Double

Function Types

{ (operand in return -operand }

CS193p

Fall 2017-18

Closures

Often you want to create the function “on the fly” (rather than already-existing like sqrt).

You can do this “in line” using a closure.

Imagine we had a function that changed the sign of its argument …

var operation: (Double) -> Double
operation =
let result = operation(4.0) // result will be -4.0

: Double)

Swift can infer that operation returns a Double

Function Types

{ (operand in return -operand }

CS193p

Fall 2017-18

Closures

Often you want to create the function “on the fly” (rather than already-existing like sqrt).

You can do this “in line” using a closure.

Imagine we had a function that changed the sign of its argument …

var operation: (Double) -> Double
operation =
let result = operation(4.0) // result will be -4.0

: Double)

Swift can infer that operation returns a Double

Function Types

{ (operand in return -operand }

and that operand is a Double

CS193p

Fall 2017-18

Closures

Often you want to create the function “on the fly” (rather than already-existing like sqrt).

You can do this “in line” using a closure.

Imagine we had a function that changed the sign of its argument …

var operation: (Double) -> Double
operation =
let result = operation(4.0) // result will be -4.0

)

Swift can infer that operation returns a Double

Function Types

{ (operand in return -operand }

and that operand is a Double

CS193p

Fall 2017-18

Closures

Often you want to create the function “on the fly” (rather than already-existing like sqrt).

You can do this “in line” using a closure.

Imagine we had a function that changed the sign of its argument …

var operation: (Double) -> Double
operation =
let result = operation(4.0) // result will be -4.0

{ (operand) in return -operand }

It also knows that operation returns a value, so the return keyword is unnecessary

Function Types

CS193p

Fall 2017-18

Closures

Often you want to create the function “on the fly” (rather than already-existing like sqrt).

You can do this “in line” using a closure.

Imagine we had a function that changed the sign of its argument …

var operation: (Double) -> Double
operation =
let result = operation(4.0) // result will be -4.0

{ (operand) in -operand }

It also knows that operation returns a value, so the return keyword is unnecessary

Function Types

CS193p

Fall 2017-18

operand

Closures

Often you want to create the function “on the fly” (rather than already-existing like sqrt).

You can do this “in line” using a closure.

Imagine we had a function that changed the sign of its argument …

var operation: (Double) -> Double
operation =
let result = operation(4.0) // result will be -4.0

(operand) in

And finally, it’ll let you replace the parameter names with $0, $1, $2, etc., and skip in …

{ }

Function Types

-

CS193p

Fall 2017-18

Closures

Often you want to create the function “on the fly” (rather than already-existing like sqrt).

You can do this “in line” using a closure.

Imagine we had a function that changed the sign of its argument …

var operation: (Double) -> Double
operation =
let result = operation(4.0) // result will be -4.0

And finally, it’ll let you replace the parameter names with $0, $1, $2, etc., and skip in …

{ }

Function Types

$0-

CS193p

Fall 2017-18

Closures

Often you want to create the function “on the fly” (rather than already-existing like sqrt).

You can do this “in line” using a closure.

Imagine we had a function that changed the sign of its argument …

var operation: (Double) -> Double
operation =
let result = operation(4.0) // result will be -4.0

That is about as succinct as possible!

{ -$0 }

Function Types

CS193p

Fall 2017-18

Closures
Where do we use closures?

Often as arguments to methods.
Many times a method wants to know “what to do” and providing a function tells it what to do.
For example, what to do when there’s an error or when something asynchronous finishes.
Or maybe you want to ask some method to repeatedly perform a function …

CS193p

Fall 2017-18

Closures
Where do we use closures?
Array has a method called map which takes a function as an argument.
It applies that function to each element of the Array to create and return a new Array.

let primes = [2.0, 3.0, 5.0, 7.0, 11.0]
let negativePrimes = primes.map({ -$0 }) // [-2.0, -3.0, -5.0, -7.0, -11.0]
let invertedPrimes = primes.map() { 1.0/$0 } // [0.5, 0.333, 0.2, etc.]
let primeStrings = primes.map { String($0) } // [“2.0”,”3.0”,”5.0”,”7.0”,”11.0”]

Note that if the last (or only) argument to a method is a closure,
you can put it outside the method’s parentheses that contain its arguments
and if the closure was the only argument, you can skip the () completely if you want.

CS193p

Fall 2017-18

Closures with property initialization
You can also execute a closure to do initialization of a property if you want …
var someProperty: Type = {

// construct the value of someProperty here
return <the constructed value>

}()

This is especially useful with lazy property initialization.

Closures

CS193p

Fall 2017-18

Closures
Capturing

Closures are regular types, so they can be put in Arrays, Dictionarys, etc.
When this happens, they are stored in the heap (i.e. they are reference types).

What is more, they “capture” variables they use from the surrounding code into the heap too.
Those captured variables need to stay in the heap as long as the closure stays in the heap.

var ltuae = 42
operation = { ltuae * $0 } // “captures” the ltuae var because it’s needed for this closure
arrayOfOperations.append(operation)
// if we later change ltuae, then the next time we evaluate operation it will reflect that
// even if we leave the scope (function or whatever) that this code is in!

This can create a memory cycle though.
We’ll see this later in the quarter and how to avoid that.

CS193p

Fall 2017-18

Demo
Improve indexOfOneAndOnlyFaceUpCard implementation

We probably used more lines of code to make indexOfOneAndOnlyFaceUpCard computed
However, a better implementation using a method that takes a closure would fix that

